UACUAAC is the preferred branch site for mammalian mRNA splicing.
نویسندگان
چکیده
The conserved branch-site sequence UAC-UAAC is known to form base pairs with the complementary sequence GUAGUA in U2 small nuclear RNA (snRNA) during mRNA splicing in the yeast Saccharomyces cerevisiae. Although the GUAGUA element is conserved in mammalian U2 snRNA, mammalian branch sites conform only weakly to a YURAC consensus and can even be deleted without obvious effects on the efficiency of splicing in vivo. To understand why the GUAGUA element of U2 is conserved in evolution but the branch site is not, we have devised two different competitive assays for branch-site selection using the first intron of the human beta-globin gene. We find that a sequence resembling UACUAAC is the most efficient branch site for mammalian mRNA splicing both in vivo and in vitro. Our results suggest that in mammals U2 snRNA can form base pairs with the branch site and the interaction between U2 and the branch site can be augmented or replaced by an interaction between the spliceosome and some other element of the intron or exons, perhaps the conserved polypyrimidine tract located immediately upstream from the 3' splice site.
منابع مشابه
The Splicing Factor BBP Interacts Specifically with the Pre-mRNA Branchpoint Sequence UACUAAC
The yeast splicing factor BBP (branchpoint bridging protein) interacts directly with pre-mRNA at or very near the highly conserved branchpoint sequence UACUAAC within the commitment complex. We also show that the recombinant protein recognizes the UACUAAC sequence. Therefore, BBP is also an acronym for branchpoint binding protein. The mammalian splicing factor SF1 is a BBP ortholog (mBBP) and a...
متن کاملCompetition between a noncoding exon and introns: Gomafu contains tandem UACUAAC repeats and associates with splicing factor-1
Gomafu (also referred to as RNCR2/MIAT) was originally identified as a noncoding RNA expressed in a particular set of neurons. Unlike protein-coding mRNAs, the Gomafu RNA escapes nuclear export and stably accumulates in the nucleus, making a unique nuclear compartment. Although recent studies have revealed the functional relevance of Gomafu in a series of physiological processes, the underlying...
متن کاملThe organization of 3' splice-site sequences in mammalian introns.
A model pre-mRNA substrate was used to carry out a detailed investigation of the functional organization of sequences at the 3' end of mammalian introns. This analysis revealed a difference in the sequence requirements for the first and second steps of the splicing reaction (lariat formation and exon ligation, respectively). Maximal efficiencies of lariat formation require a pyrimidine stretch ...
متن کاملDissection of Splicing Regulation at an Endogenous Locus by Zinc-Finger Nuclease-Mediated Gene Editing
Sequences governing RNA splicing are difficult to study in situ due to the great difficulty of traditional targeted mutagenesis. Zinc-finger nuclease (ZFN) technology allows for the rapid and efficient introduction of site-specific mutations into mammalian chromosomes. Using a ZFN pair along with a donor plasmid to manipulate the outcomes of DNA repair, we introduced several discrete, targeted ...
متن کاملA novel mechanism of aberrant pre-mRNA splicing in humans.
Eukaryotic pre-mRNA splicing is regulated by consensus sequences at the intron boundaries and branch site. Recently, Sirand-Pugnet et al. reported the importance of an additional intronic sequence, an (A/U)GGG repeat in chicken beta-tropomyosin that is a binding site for a protein required for spliceosome assembly. Interestingly, we have detected mutations in IVS3 of the human growth hormone (G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 86 8 شماره
صفحات -
تاریخ انتشار 1989